sPHENIX γ-Jet Simulations

Joe Osborn

University of Michigan

Last Time

- Last presentation <u>January 17</u>
- Showed first look at photon+jet observables and detector response with Jet Structure Topical Group's PYTHIA files
- Today:
 - Study of jet quantities how low can we (reliably) measure a jet?
 - γ+jet acceptance and efficiency in sPHENIX
 - Estimate on number of measured γ+jets in sPHENIX
 - Resolution estimate of $\Delta \varphi$ and p_{out} at sPHENIX

PYTHIA Requirements

- Using PYTHIA8 simulation, all prompt photon processes on
- Require PhaseSpace:pTHatMin = 10.0 of hard scatter to be greater than 10 GeV
- No other phase space cuts
- Require reconstruction $p_T^{\gamma}>10$
- Unless otherwise indicated jets are reconstructed with the anti $k_{\scriptscriptstyle T}$ algorithm with R=0.4

Jet Response

Jet p_T Response

- Jet p_T response is significantly worse at small p_T (not surprising)
- At 9-12 GeV the response returns to the nominal mean+width of ~0.8±0.1 that was seen for p_T^{jet}>20 GeV from last presentation
- Indicates a limit for γ+jet measurements
 of ~12 GeV for the γ

Jet φ Response

- In order to reliably determine $p_{out} = p_T^{jet} sin(\Delta \phi) \text{ we need to also have}$ good jet ϕ resolution
- This considerably degrades with jet p_T also
- Further emphasizes the point that we need a jet of at least ~10 GeV

Jet Response as a Function of Cone Size R

- Jet cone size does not change resolution of azimuthal angle
- Similar (non)dependence was found with p_T^{jet} before Quark Matter (see backups)
- Indicates in pp collisions that jet is mostly defined by several hard collimated particles?

Acceptance/Efficiency

Truth Distributions

Truth distributions look as expected for the direct photon

Acceptance and Efficiency

- Acceptance and efficiency determined for the sPHENIX acceptance only
- So really it is just an efficiency
- $\frac{N_{reco}(p_T^{\gamma}>10,p_T^{jet}>5GeV)}{N_{truth}(p_T^{gamma}>10,p_T^{jet}>5GeV,|\eta|<1)}$

Efficiency flat in φ;
 shows some
 detector effects in η

γ-Jet Yield Estimate

Cross Section

- Unfortunately I can't find a γ-jet cross section at RHIC energies
 - Theorists probably skipped it since no detectors are capable of measuring it at RHIC
- So I used the direct photon cross section from PHENIX
 - Not exactly the same, but to first order every direct photon should have an away-side jet (just a question of if we measure the jet or not)
- Need to translate cross section to yields

Cross Section Yields

- Cross section translated to yields
- Yields are within $|\eta| < 1$
- Fit to a power law to get the high p_T dependence where we will be able to measure at sPHENIX
- Now to apply sPHENIX efficiency values

Cross Section Yields + Acc/Eff

- Apply acceptance and efficiency values to the yields from previous page
- Quite a few direct photons!
 - The power law extrapolation is just the power law fit multiplied by the saturation term from the acceptance/efficiency fit
- Even if we assume some percentage of jet finding efficiency this is a good number of γ -jet over a large range of p_T^{γ}

Comparisons?

- Unfortunately I don't see any γ-jet yield projections in the sPHENIX proposal document to cross check with
- Before acceptance and efficiency, seems to match the order of magnitude of expected γ-jets above 30 GeV according to Dennis Perepelitsa (~10k above ~30 GeV)

Resolution of Observables

Resolution Estimate on p_{out} at sPHENIX

- To make a good γ —jet measurement of $p_{out} = p_T^{jet} sin \Delta \varphi$, we need good resolution on p_T^{jet} , and the azimuthal angles of the γ -jet
- p_T jet resolution from my simulations shown to the right
 - Note: don't believe the constant term, it is so small due to no data at higher p_T to constrain fit. sPHENIX proposal shows that the resolution flattens out at ~0.1 (bottom right)
- We saw that the resolution on ϕ_{iet} ~0.06 rad
- The EMCal tower resolution is ~0.02 rad
- $0.08/\pi$ rad gives a ~3% resolution, so the p_T term dominates the resolution

Resolution Estimate of p_{out} and $\Delta \phi$

- We saw that the nonperturbative widths are on the order of ~2 GeV
- Therefore we can construct $\Delta \varphi$ bins and p_{out} bins with widths of ~0.08 rads or ~0.2 GeV, which are fine enough to measure nonperturbative behavior

Conclusions

- Showed jet p_T and φ resolution down to small jet p_T
 - Resolution degrades considerably, as expected. For making a good $\Delta \varphi/p_{out}$ measurement, probably need to consider only photons >12 GeV so that the jet has $\gtrsim 10$ GeV p_T and thus reasonable resolution on φ, η, p_T
- Acceptance/Efficiency correction constructed for γ-jet
- Obtained some yield estimate of direct photons for sPHENIX. Seems like we will have plenty to measure in the above $p_{\scriptscriptstyle T}$ range
- Resolution of current detector configuration should be sufficient to make good measurement differential in $\Delta\varphi$ and p_{out}
- To-Do
 - Generate some set of PYTHIA files with number of γ-jets expected so that I can make some statistical precision estimate on physics observables

Back Ups

Truth γ Distributions

- η truth response is confined to $|\eta|$ <1 at $p_T>25$ ish
 - This matches the efficiency towards 1 with increasing p_T
- This also reinforces discussion with Stefan that the effect is from kinematics
- i.e. as p_T increases one probes a larger x in the proton and thus is constrained kinematically to certain polar angle scatterings

sPHENIX Acceptance and Efficiency in Full

Phase Space

- Here acceptance and efficiency is made in full phase space, so this is a true "acceptance and efficiency"
- i.e. there is no requirement that the truth photon-jet pair falls within $|\eta| < 1$

Cross Section to Yields

$$E rac{d^3 \sigma}{dp^3} = E rac{d^3 \sigma}{p_T d\phi dp_t dp_z}$$

- Changing the cross section values to yields
- Using integrated luminosity of 300 pb⁻¹ (RHIC Cold QCD Plan) arXiv:1602.03922

Using:
$$\dfrac{dp_z}{E}=dy$$
 $\int d\phi=2\pi$

Therefore with: $N=\sigma\mathcal{L}$

$$E\frac{d^3\sigma}{dp^3}2\pi p_T \mathcal{L} = \frac{d^2N}{dp_T dy}$$

Direct Photon Yields

- Applying the prescription on the previous page to the cross section points gives this (top right)
- PHENIX cross section measured in |η|<0.25
 - Not a typo, they used fiducial cuts
- So this means for sPHENIX this should be scaled by a factor of 4 $(0.5\eta*4 = 2\eta)$ (bottom right)
 - PYTHIA shows cross section is basically flat between $|\eta| < 1$
- This gives a reasonable match to what Dennis said: $10k \gamma$ -jets above p_T =30
 - Integral of power law fit [30-40 GeV] gives ~8000 total

Jet p_T Response with Cone Size

- Jet p_T response largely unmodified by cone size used
- Indicates in pp collisions that jet is defined by several hard collimated particles
- Underlying event does not contribute much to jet characteristics

